Access Course Curriculum Maps

Each access course curriculum map is organized to align with the curriculum map for its corresponding general education course. Following the pacing of the curriculum maps will allow access course and general education teachers to collaboratively plan instructional strategies, resources, and content-related events, while also ensuring that course standards are thoroughly instructed.

In this curriculum map, each course standard includes the aligned Florida Standards Access Points, instructional resources, and a space to indicate the date of instruction. When developing standards-aligned lesson plans, teachers should keep in mind the “Big 3” of lesson planning:

1. Identify the Florida Standard to be taught,
2. Crosswalk to the corresponding Florida Standard Access Point, and
3. Identify resources to be used.

The instructional resources listed in this curriculum map were gathered from several sources, including general education curriculum maps, the Florida Access Project website (https://accessstofls.weebly.com/), CPALMS (http://www.cpalms.org/Public/), and Volusia’s approved curricula and instructional materials for access courses.

Access courses are setting-neutral, which means a student working on Florida Standards Access Points can be instructed on those standards in a variety of settings, including those with same-grade nondisabled peers in general educational courses. Grade-level access points instruction is delivered at the individual level needed for students to be successful and move learning forward.

Access points in the subject areas of Science, Social Studies, Art, Dance, Physical Education, Theatre, and Health provide tiered access to the general curriculum through three levels (Participatory, Supported, and Independent). Access points in English Language Arts and Mathematics do not contain these tiers, but instead contain Essential Understandings (or EUs). EUs consist of skills at varying levels of complexity and are a resource when planning for instruction.

Only students with a significant cognitive disability are eligible to participate in the Florida Standards Access Points curriculum pathway and be enrolled in access courses. Students with significant cognitive disabilities will learn and acquire skills at varied rates. Although efforts should be made to follow the curriculum map as written, modifications to the pacing in this curriculum map may need to occur. Prioritized standards, based on the Florida Standards Alternate Assessment (FSAA) Blueprint, have an asterisk and are highlighted in yellow throughout the curriculum map.

| Unit 1: Nature of Science | Pacing: August 13 – October 12 |
Big Idea: Practice of Science

SC.K.N.1.1: Collaborate with a partner to collect information.
Remarks/Examples: Participate in collaborative conversations with diverse partners about kindergarten topics and texts with peers and adults in small and larger groups.

Resources

GROWING UP WILD:
- Big Idea/Standard 1: The Practice of Science
 - Teacher Hints for “Introduction to Science”:
 - Digital textbook resources can be accessed through V-Portal. See Digital Program Access Information Document on Canvas for access information.
 - Interactive notebooks can be developed whole class and/or individually. Developing a whole-class notebook gives the teacher the opportunity to model expectations so that the transition to using individual science notebooks is easier later in the school year.
 - Non-standard units of measure (e.g., pretzel sticks, marbles) will be used when determining the length and weight of objects in grade K.

Related Access Points

<table>
<thead>
<tr>
<th>Access Points</th>
<th>Description</th>
<th>Date(s) Instruction</th>
</tr>
</thead>
<tbody>
<tr>
<td>SC.K.N.1.In.1</td>
<td>Identify a partner to obtain information.</td>
<td></td>
</tr>
<tr>
<td>SC.K.N.1.Su.1</td>
<td>Collect a designated item with a partner.</td>
<td></td>
</tr>
<tr>
<td>SC.K.N.1.Pa.1</td>
<td>Share objects with a partner.</td>
<td></td>
</tr>
</tbody>
</table>

Big Idea: Organization and Development of Living Organisms

SC.K.L.14.1: Recognize the five senses and related body parts.

Resources

LITERACY:
- *Our Senses*

INSTRUCTIONAL MATERIALS:
- My senses tell me...
- *Vegetables…in Cupcakes?!*
- *Senses Thinking Probe*
- *Vegetables…in Cupcakes?! Assessment*

CPALMS:
- *Did You Hear That?*
- *Does Your Nose Know?*
- *The Five Senses*
- *Vegetables…in Cupcakes?!*
- *My Senses Tell Me*
- *All About Me: My Senses*
- *Coming to Our Senses*
- *Popcorn Science for all Five Senses*
- *Clapping? Where?*
The Senses
The Five Senses
GROWING UP WILD:
Lessons: Spider Webs, Looking at Leaves, Grow As We Go, Terrific Turkeys, Lunch For A Bear, Tracks!
Teacher Hints for “Five Senses”:
• The sense of sight is the most developed sense in humans.
• Students can discover that light is necessary for objects to be seen.
• The sense of touch is not highly developed in students of this age.
• A description of how something feels is relative making this a difficult task for some students.
• Hearing is the sense that is second only to sight in the degree of development in humans.
• The descriptions of sound may include, but are not limited to, the following: loud, soft, ringing, clanging, beeping, squawking, dripping, howling.
• Wafting is a safe method of smelling substances by fanning your hand over the substance pulling the smell towards your nose.
• Tasting in science is a safety issue. Continually impress upon children the need to never taste a substance unless specifically instructed to do so.
• Taste is a sense that relies heavily on the sense of smell. Try holding your nose and tasting an unknown flavor of life saver. Make a prediction of what flavor it is. Let go of your nose and make another prediction. Check to see if your prediction was correct.

<table>
<thead>
<tr>
<th>Related Access Points</th>
<th>Description</th>
<th>Date(s) Instruction</th>
</tr>
</thead>
<tbody>
<tr>
<td>SC.K.L.14.Su.1</td>
<td>Recognize the senses of sight and hearing and related body parts.</td>
<td></td>
</tr>
<tr>
<td>SC.K..L.14.Pa.1</td>
<td>Recognize and respond to one type of sensory stimuli.</td>
<td></td>
</tr>
</tbody>
</table>

Big Idea: Practice of Science

SC.K.N.1.2: Make observations of the natural world and know that they are descriptors collected using the five senses.

Remarks/Examples: With guidance and support from adults, recall information from experiences or gather information experiences or gather information from provided sources to answer questions.

<table>
<thead>
<tr>
<th>Resources</th>
</tr>
</thead>
<tbody>
<tr>
<td>LITERACY:</td>
</tr>
<tr>
<td>Bubble Gum, Bubble Gum by Lisa Wheeler</td>
</tr>
<tr>
<td>INSTRUCTIONAL MATERIALS:</td>
</tr>
<tr>
<td>Parts of a plant lesson</td>
</tr>
<tr>
<td>Double Bubble Lesson (Bubble Gum, Bubble Gum)</td>
</tr>
<tr>
<td>Kindergarten Listening Walk</td>
</tr>
<tr>
<td>Sorting Lessons</td>
</tr>
<tr>
<td>Doing Science</td>
</tr>
<tr>
<td>HANDS ON LABS:</td>
</tr>
<tr>
<td>Backyard Science...The Five Senses</td>
</tr>
</tbody>
</table>

GROWING UP WILD:
Big Idea/Standard 1: The Practice of Science
Teacher Hints for "Investigations Using Five Senses":
• Descriptions of the basic science process skills (inquiry) can be found on page 5.
• Observation is the foundation of the science processes. Initial information about an object comes from the sense of sight.
• Making observations in a science classroom includes the use of all five senses (when appropriate). Help students avoid the misconception that observations only include what they can see.
• Students should be purposefully engaged in activities that incorporate multiple senses.
• Observations should lead to questions. As students engage in becoming better observers (attention to details), they will also become more curious and ask more questions.
• An explanation of what has been learned should include evidence from what has been observed through the use of the five senses.
 (I learned _____ because I observed _____ by using my sense of _____.).
• Non-standard units of measure are used in Kindergarten. Students will measure length, volume, weight, and temperature using objects such as cubes, paper clips, pennies, popsicle sticks, pretzels, and marbles.
• The following descriptors should be used when describing or comparing length, volume, weight, and temperature: long/short, wide/narrow, tall/short, empty/full, heavy/light, hot/warm/cold.
• An explanation of what has been learned should include evidence from what has been “measured” with non-standard units of measure.
 (I learned _____ because I used _____ to measure _____.).
• Handling scientific tools such as beakers, rulers, and thermometers (precise measurements not required) to conduct simple investigations will provide students with early experiences that will set them up for success when they begin using standard units of measure (inches and centimeters) in grade 1.

Related Access Points
<table>
<thead>
<tr>
<th>Description</th>
<th>Date(s) Instruction</th>
</tr>
</thead>
<tbody>
<tr>
<td>SC.K.N.1.In.2</td>
<td>Identify information about objects and actions in the natural world through observation.</td>
</tr>
<tr>
<td>SC.K.N.1.Su.2</td>
<td>Identify information about objects in the natural world through observation.</td>
</tr>
<tr>
<td>SC.K.N.1.Pa.2</td>
<td>Recognize common objects in the natural world through observation.</td>
</tr>
</tbody>
</table>

SC.K.N.1.5: Recognize that learning can come from careful observations.
Remarks/Examples: Use appropriate tools strategically.

Resources
LITERACY:
 Bubble Gum, Bubble Gum by Lisa Wheeler
INSTRUCTIONAL MATERIALS:
 Parts of a plant lesson
 Double Bubble Lesson (Bubble Gum, Bubble Gum)
 Kindergarten Listening Walk
 Sorting Lessons
 Doing Science
HANDS ON LABS:
Backyard Science...The Five Senses
Teacher Hints for “Investigations Using Five Senses”:
• Descriptions of the basic science process skills (inquiry) can be found on page 5.
• Observation is the foundation of the science processes. Initial information about an object comes from the sense of sight.
• Making observations in a science classroom includes the use of all five senses (when appropriate). Help students avoid the misconception that observations only include what they can see.
• Students should be purposefully engaged in activities that incorporate multiple senses.
• Observations should lead to questions. As students engage in becoming better observers (attention to details), they will also become more curious and ask more questions.
• An explanation of what has been learned should include evidence from what has been observed through the use of the five senses.
(I learned _____ because I observed _____ by using my sense of _____.).
• Non-standard units of measure are used in Kindergarten. Students will measure length, volume, weight, and temperature using objects such as cubes, paper clips, pennies, popsicle sticks, pretzels, and marbles.
• The following descriptors should be used when describing or comparing length, volume, weight, and temperature: long/short, wide/narrow, tall/short, empty/full, heavy/light, hot/warm/cold.
• An explanation of what has been learned should include evidence from what has been “measured” with non-standard units of measure.
(I learned _____ because I used _____ to measure _____.).
• Handling scientific tools such as beakers, rulers, and thermometers (precise measurements not required) to conduct simple investigations will provide students with early experiences that will set them up for success when they begin using standard units of measure (inches and centimeters) in grade 1.

<table>
<thead>
<tr>
<th>Related Access Points</th>
<th>Description</th>
<th>Date(s) Instruction</th>
</tr>
</thead>
<tbody>
<tr>
<td>SC.K.N.1.In.2</td>
<td>Identify information about objects and actions in the natural world through observation</td>
<td></td>
</tr>
<tr>
<td>SC.K.N.1.Su.2</td>
<td>Identify information about objects in the natural world through observation</td>
<td></td>
</tr>
<tr>
<td>SC.K.N.1.Pa.2</td>
<td>Recognize common objects in the natural world through observation</td>
<td></td>
</tr>
</tbody>
</table>

Pacing: October 16 – December 19

Big Idea: Properties of Matter

SC.K.P.8.1: Sort objects by observable properties, such as size, shape, color, temperature (hot or cold), weight (heavy or light) and texture.
Remarks/Examples: The use of the more familiar term “weight” instead of the term “mass” is recommended for grades K-2. Classify objects into given categories; count the number of objects in

Pacing: October 16 – 24
each category and sort the categories by count. Note: Limit category counts to be less than or equal to 10.

<table>
<thead>
<tr>
<th>Resources</th>
<th>INSTRUCTIONAL MATERIALS:</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Getting Wise About Size! Lesson</td>
</tr>
<tr>
<td></td>
<td>Sort it Out! Lesson</td>
</tr>
<tr>
<td></td>
<td>Cookie Crumbles</td>
</tr>
<tr>
<td></td>
<td>Is It Matter?</td>
</tr>
<tr>
<td></td>
<td>Is It Matter? Thinking Probe</td>
</tr>
<tr>
<td></td>
<td>Comparing Cubes</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Resources</th>
<th>CPALMS:</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Sorting Lessons</td>
</tr>
<tr>
<td></td>
<td>Finding the One!!</td>
</tr>
<tr>
<td></td>
<td>Observable Properties of Matter</td>
</tr>
</tbody>
</table>

Teacher Hints for "Properties of Matter":
- Students are not responsible for being able to distinguish materials as solids, liquids, or gases in Kindergarten (only the material’s properties that can be observed with or without tools).
- A pan balance, ruler, and thermometer can be used to compare the weight, length (including width and height), and temperature of materials. Standard measurement in precise units (inches and centimeters) will be taught in Grade 1 (science).

Related Access Points

<table>
<thead>
<tr>
<th>Related Access Points</th>
<th>Description</th>
<th>Date(s) Instruction</th>
</tr>
</thead>
<tbody>
<tr>
<td>SC.K.P.8.In.1</td>
<td>Sort objects by observable properties, such as size, shape, or color.</td>
<td></td>
</tr>
<tr>
<td>SC.K.P.8.Su.1</td>
<td>Match objects by an observable property, such as size or color.</td>
<td></td>
</tr>
<tr>
<td>SC.K.P.8.Pa.1</td>
<td>Recognize two common objects that are identical to each other.</td>
<td></td>
</tr>
</tbody>
</table>

Big Idea: The Practice of Science

SC.K.N.1.3: Keep records as appropriate, such as pictorial records of investigations conducted.

Pacing: October 25 – November 2

Resources

LITERACY:
- Bubble Gum, Bubble Gum by Lisa Wheeler

INSTRUCTIONAL MATERIALS:
- Parts of a plant lesson
- Double Bubble Lesson (Bubble Gum, Bubble Gum)
Related Access Points

<table>
<thead>
<tr>
<th>Description</th>
<th>Date(s) Instruction</th>
</tr>
</thead>
<tbody>
<tr>
<td>SC.K.N.1.In.3 Observe, explore, and create a visual representation of real objects.</td>
<td></td>
</tr>
<tr>
<td>SC.K.N.1.Su.3 Observe, explore, and match pictures to real objects.</td>
<td></td>
</tr>
</tbody>
</table>

Big Idea: Changes in Matter

SC.K.P.9.1: Recognize that the shape of materials such as paper and clay can be changed by cutting, tearing, crumpling, smashing, or rolling.

Resources

INSTRUCTIONAL MATERIALS:
- This lesson provides the opportunity for students to practice changing matter
- The Paper Change
- Snap Blocks Thinking Probes

CPALMS:
- Physical Changes
- The Paper Change

Teacher Hints for “Changes in Matter”:
- The primary focus of this benchmark is to be able to explain that materials change in many different ways (e.g., size, shape, color, texture, temperature). Students do not need to understand the difference between physical and chemical change even though the textbook provides examples of both.
- Physical changes can generally be described by noting the change in size and form of an object.

Related Access Points

<table>
<thead>
<tr>
<th>Description</th>
<th>Date(s) Instruction</th>
</tr>
</thead>
<tbody>
<tr>
<td>SC.K.P.9.In.1 Recognize that the shape of objects, such as paper, changes when cut, torn, or crumpled.</td>
<td></td>
</tr>
<tr>
<td>SC.K.P.9. Su.1 Recognize that the shape of objects, such as paper, changes when cut or torn.</td>
<td></td>
</tr>
<tr>
<td>SC.K.P.9.Pa.1 Recognize a change in an object.</td>
<td></td>
</tr>
</tbody>
</table>

Big Idea: The Practice of Science

SC.K.N.1.4: Observe and create a visual representation of an object which includes its major features.

Resources

LITERACY:
- When a Storm Comes Up by Allan Fowler
- Cloudy With a Chance of Meatballs by Judi and Ron Barrett

INSTRUCTIONAL MATERIALS:
- In this activity, the students will be able to describe the jobs people can do at a zoo or an aquarium
- All This Talk about Weather is Making Me Hungry!

HANDS ON LABS:
- This is a short lesson to teach Earth/Space benchmarks on day and night to your K students. It also addresses some Nature of Science benchmarks.
- Is It a Model?
- Comparing Plants, Animals, and Seeds
- GROWING UP WILD:
<table>
<thead>
<tr>
<th>Related Access Points</th>
<th>Description</th>
<th>Date(s) Instruction</th>
</tr>
</thead>
<tbody>
<tr>
<td>SC.K.N.1.In.3</td>
<td>Observe, explore, and create a visual representation of real objects.</td>
<td></td>
</tr>
<tr>
<td>SC.K.N.1.Su.3</td>
<td>Observe, explore, and match pictures to real objects.</td>
<td></td>
</tr>
</tbody>
</table>

Big Idea: Forms of Energy

SC.K.P.10.1: Observe that things that make sound vibrate.
Pacing: November 26 - 27

Resources

- INSTRUCTIONAL MATERIALS:
 - Exploring Instruments in Kindergarten
 - Did You Hear That?
 - Recycled Music
 - Making Sound
 - Rubber Band Box Thinking Probe
- CPALMS:
 - Vibrations Make Sound
 - Ear Guitar
 - Kindergarten Listening Walk

Teacher Hints for “Sound”:

- All sound is made by vibrating matter. Vibrations are back-and-forth movements.
- Vibrations can often be seen and felt.
- Soft and loud sounds refer to the volume (loudness) of sound. High and low sounds refer to pitch. While students do not need to know the difference between volume and pitch, be careful to avoid associating high and low sounds with volume (loudness).
- Collaborate with the music teacher to develop an instructional plan to support sound energy.
- Ask your music teacher if you can borrow instruments to build sound centers.

<table>
<thead>
<tr>
<th>Related Access Points</th>
<th>Description</th>
<th>Date(s) Instruction</th>
</tr>
</thead>
<tbody>
<tr>
<td>SC.K.P.10.In.1</td>
<td>Identify objects that create specific sounds.</td>
<td></td>
</tr>
<tr>
<td>SC.K.P.10.Su.1</td>
<td>Match sounds to specific objects.</td>
<td></td>
</tr>
<tr>
<td>SC.K.P.10.Pa.1</td>
<td>Recognize and respond to common sounds.</td>
<td></td>
</tr>
</tbody>
</table>

Big Idea: Motion of Objects

SC.K.P.12.1: Investigate that things move in different ways, such as fast, slow, etc.
Pacing: November 28 – December 5

Resources

- INSTRUCTIONAL MATERIALS:
 - Investigating Motion With Marbles
 - How and Where Things Move
 - Rolling Marbles
- HANDS ON LABS:
 - Making Objects Move
<table>
<thead>
<tr>
<th>Related Access Points</th>
<th>Description</th>
<th>Date(s) Instruction</th>
</tr>
</thead>
<tbody>
<tr>
<td>SC.K.P.12.In.1</td>
<td>Identify ways that things move, such as fast or slow.</td>
<td></td>
</tr>
<tr>
<td>SC.K.P.12.Su.1</td>
<td>Recognize that things move.</td>
<td></td>
</tr>
</tbody>
</table>

Big Idea: Forces and Changes in Motion

SC.K.P.13.1: Observe that a push or a pull can change the way an object is moving.

INSTRUCTIONAL MATERIALS:
- All Aboard! Pushes and Pulls
- Rolling Marbles
- Dropping Balls
- Marble Roll Thinking Probe

Teacher Hints for “Forces and Changes in Motion”:
- Continue exploration of magnetism when instructing pushes/pulls and changes in motion.
- When an object moves it always changes position and sometimes changes direction.
- Additional words that can describe the position of an object may include, but are not limited to, the following: over, beneath, to the right/left of, and behind.
- Force is required to make an object move. Young children know that it requires a push or pull to move things. They also realize that they do not always have enough force in their own strength to move some objects.

<table>
<thead>
<tr>
<th>Related Access Points</th>
<th>Description</th>
<th>Date(s) Instruction</th>
</tr>
</thead>
<tbody>
<tr>
<td>SC.K.P.13.In.1</td>
<td>Demonstrate pushing or pulling of an object to make it move.</td>
<td></td>
</tr>
<tr>
<td>SC.K.P.13.Su.1</td>
<td>Recognize that pushing or pulling of an object makes it move.</td>
<td></td>
</tr>
<tr>
<td>SC.K.P.13.Pa.1</td>
<td>Track the movement of objects that are pushed or pulled.</td>
<td></td>
</tr>
</tbody>
</table>

Unit 3: Nature of Science/Earth and Space Science

Pacing: January 7 – February 8

Big Idea: Earth in Space and Time

SC.K.E.5.1: Explore the Law of Gravity by investigating how objects are pulled toward the ground unless something holds them up.

INSTRUCTIONAL MATERIALS:
- Look Out Below!
- Fly, Fly Away
- Talking About Gravity
- Apple on a Desk

Pacing: January 7 - 11
Dropping Balls
Standing on One Foot
Where Would It Fall?

CPALMS:
- Exploring Gravity and Parachutes
- Bill Nye Intro to Gravity
- Gravity Balloon Experiment
- Gravity Free Water

Teacher Hints for “Gravity”:
- When objects fall, they are being pulled by gravity.
- Gravity is a non-contact force that is difficult for young students to conceptualize. However, they have been fascinated by gravity since they started dropping objects repeatedly off their high chairs.

This concept is rooted in a cause/effect relationship and students should be comfortable expressing the relationship.

Related Access Points

<table>
<thead>
<tr>
<th>Related Access Points</th>
<th>Description</th>
<th>Date(s) Instruction</th>
</tr>
</thead>
<tbody>
<tr>
<td>SC.K.E.5.In.1</td>
<td>Identify that objects can fall to the ground unless something stops them.</td>
<td></td>
</tr>
<tr>
<td>SC.K.E.5.Su.1</td>
<td>Recognize that objects fall to the ground.</td>
<td></td>
</tr>
<tr>
<td>SC.K.E.5.Pa.1</td>
<td>Track a falling object.</td>
<td></td>
</tr>
<tr>
<td>SC.K.E.5.2: Recognize the repeating pattern of day and night.</td>
<td>Pacing: January 14 -16</td>
<td></td>
</tr>
</tbody>
</table>

Resources

INSTRUCTIONAL MATERIALS:
- Cpalms Moon
- Day and Night
- This is a kindergarten MEA in which students are deciding on the ideal day for another student to stay in and do chores.
- Darkness at Night
- Objects in the Sky
- Me and My Shadow
- When Is My Shadow the Longest? Thinking Probe
- Where Do Stars Go?
- Camping Trip

CPALMS:
- Sun and Moon | Day and Night
- Day and Night
- Explore a Model of Earth's Yearly Revolution Around the Sun
- Objects in the Sky
- Hello Sun
- Moon Walk

Teacher Hints for “Day and Night Sky”:
- The sun is the closest star to the Earth.
• Understanding that day and night repeats on a regular basis is foundational to the understanding that day and night is caused by the rotation of Earth on its axis. Earth’s rotation on its axis is taught in Grade 4.
• Students may make observations that the shape of the moon appears to change over time. Teachers may want to consider making models of the different shapes of the moon that have been observed (e.g., clay, Oreo cookies, construction paper).
• Tracking and recording the observable shapes of the moon is no longer a requirement outlined in the map (this concept will be taught in Grade 4).
• Sort pictures seen in the day or night sky.
• Record objects seen in both the day and night sky.

<table>
<thead>
<tr>
<th>Related Access Points</th>
<th>Description</th>
<th>Date(s) Instruction</th>
</tr>
</thead>
<tbody>
<tr>
<td>SC.K.E.5.In.2</td>
<td>Identify daily activities in a 24-hour period, such as eating breakfast and going to bed, and associate activities with morning and night.</td>
<td></td>
</tr>
<tr>
<td>SC.K.E.5.Su.2</td>
<td>Identify one common activity that occurs in the day and one that occurs in the night.</td>
<td></td>
</tr>
<tr>
<td>SC.K.E.5.Pa.2</td>
<td>Recognize one common activity that occurs during the day.</td>
<td></td>
</tr>
<tr>
<td>SC.K.E.5.3:</td>
<td>Recognize that the Sun can only be seen in the daytime.</td>
<td>Pacing: January 17 - 22</td>
</tr>
</tbody>
</table>

Resources

INSTRUCTIONAL MATERIALS:
- Cpalms Moon
- Day and Night
- This is a kindergarten MEA in which students are deciding on the ideal day for another student to stay in and do chores.
- Darkness at Night
- Objects in the Sky
- Me and My Shadow
- When Is My Shadow the Longest? Thinking Probe
- Where Do Stars Go?
- Camping Trip

CPALMS:
- Sun and Moon | Day and Night
- Day and Night
- Explore a Model of Earth's Yearly Revolution Around the Sun
- Objects in the Sky
- Hello Sun
- Moon Walk

Teacher Hints for “Day and Night Sky”:
• The sun is the closest star to the Earth.
• Understanding that day and night repeats on a regular basis is foundational to the understanding that day and night is caused by the rotation of Earth on its axis. Earth’s rotation on its axis is taught in Grade 4.
Students may make observations that the shape of the moon appears to change over time. Teachers may want to consider making models of the different shapes of the moon that have been observed (e.g., clay, Oreo cookies, construction paper).

Tracking and recording the observable shapes of the moon is no longer a requirement outlined in the map (this concept will be taught in Grade 4).

Sort pictures seen in the day or night sky.

Record objects seen in both the day and night sky.

Related Access Points

<table>
<thead>
<tr>
<th>Access Point</th>
<th>Description</th>
<th>Date(s) Instruction</th>
</tr>
</thead>
<tbody>
<tr>
<td>SC.K.E.5.In.3</td>
<td>Identify the Sun in the daytime.</td>
<td></td>
</tr>
<tr>
<td>SC.K.E.5.Su.3</td>
<td>Recognize the Sun in the daytime.</td>
<td></td>
</tr>
<tr>
<td>SC.K.E.5.Pa.3</td>
<td>Associate the Sun with the daytime.</td>
<td></td>
</tr>
</tbody>
</table>

SC.K.E.5.4: Observe that sometimes the Moon can be seen at night and sometimes during the day.

Pacing: January 23 - 25

Resources

INSTRUCTIONAL MATERIALS:
- Cpalms Moon Day and Night
- Darkness at Night
- Objects in the Sky
- Me and My Shadow
- When Is My Shadow the Longest? Thinking Probe
- Where Do Stars Go?
- Camping Trip

CPALMS:
- Sun and Moon | Day and Night
- Day and Night
- Explore a Model of Earth's Yearly Revolution Around the Sun
- Objects in the Sky
- Hello Sun
- Moon Walk

Teacher Hints for “Day and Night Sky”:

- The sun is the closest star to the Earth.
- Understanding that day and night repeats on a regular basis is foundational to the understanding that day and night is caused by the rotation of Earth on its axis. Earth’s rotation on its axis is taught in Grade 4.
- Students may make observations that the shape of the moon appears to change over time. Teachers may want to consider making models of the different shapes of the moon that have been observed (e.g., clay, Oreo cookies, construction paper).
- Tracking and recording the observable shapes of the moon is no longer a requirement outlined in the map (this concept will be taught in Grade 4).
- Sort pictures seen in the day or night sky.
- Record objects seen in both the day and night sky.

<table>
<thead>
<tr>
<th>Related Access Points</th>
<th>Description</th>
<th>Date(s) Instruction</th>
</tr>
</thead>
<tbody>
<tr>
<td>SC.K.E.5.In.4</td>
<td>Identify the Moon in the sky at night.</td>
<td></td>
</tr>
<tr>
<td>SC.K.E.5.Su.4</td>
<td>Recognize the Moon in the sky at night.</td>
<td></td>
</tr>
<tr>
<td>SC.K.E.5.Pa.4</td>
<td>Associate the Moon with night.</td>
<td></td>
</tr>
</tbody>
</table>

SC.K.E.5.5: Observe that things can be big and things can be small as seen from Earth.
Pacing: January 28 – February 1

Resources
- INSTRUCTIONAL MATERIALS:
 - Big Small Near Far
 - Emmy's Moon and Stars
 - CPALMS:
 - Big Small Near Far
 - Backyard Astronomy
 - Set-Up a Solar System of Kids
 - Star Child

Teacher Hints for “Size and Distance”:
- Students need to define what makes an object big and what makes an object small. According to the class’s definition, students should be able to accurately sort all kinds of objects. Eventually we want students to realize that size is relative.
- Students need to define what determines when an object is far away and when an object is nearby. According to the class’s definition, students should be able to accurately categorize all kinds of objects. Eventually we want students to realize that distance is relative.
- The farther away something gets, the smaller it appears to become; the closer something gets the larger it appears to become. The object never actually changes in size. This is intuitive to us but not to students.
- The relationship between size and distance is foundational to understanding concepts of size and distance as they relate to space (this concept is further developed in Grade 3).
- The moon is closer to Earth than the stars. The moon appears to be larger than the stars. The relationship that exists between size and distance is what explains why the moon appears to be larger than the stars even though it is not.
- Consider discussing size and distance relationships accurately represented in fiction and non-fiction literature.

<table>
<thead>
<tr>
<th>Related Access Point</th>
<th>Description</th>
<th>Date(s) Instruction</th>
</tr>
</thead>
<tbody>
<tr>
<td>SC.K.E.5.In.5</td>
<td>Observe big and small things in the sky.</td>
<td></td>
</tr>
<tr>
<td>SC.K.E.5.Su.5</td>
<td>Recognize the size of items as either big or small.</td>
<td></td>
</tr>
<tr>
<td>SC.K.E.5.Pa.5</td>
<td>Recognize items that are big.</td>
<td></td>
</tr>
</tbody>
</table>

SC.K.E.5.6: Observe that some objects are far away and some are nearby as seen from Earth.
Pacing: February 4 - 8

Resources
- INSTRUCTIONAL MATERIALS:
 - Big Small Near Far
 - Emmy's Moon and Stars
 - CPALMS:
Unit 4: Nature of Science/Life Science

Big Idea: Organization and Development of Living Organisms

SC.K.L.14.3: Observe animals, describe how they are alike and how they are different in the way they look and in the things they do.

Pacing: February 9 – May 31

Resources

INSTRUCTIONAL MATERIALS:
- Observe plants and animals, describe how they are alike and how they are different in the way they look and in the things they do.
- Is It an Animal?
- Is It a Plant?
- Plants in the Dark and Light
- Does It Have a Life Cycle?
- Sam's Puppy
- Respiration
- Biological Evolution

Related Access Points

<table>
<thead>
<tr>
<th>Access Points</th>
<th>Description</th>
<th>Date(s) Instruction</th>
</tr>
</thead>
<tbody>
<tr>
<td>SC.K.E.5.In.6</td>
<td>Identify an item that is far away and an item that is nearby.</td>
<td></td>
</tr>
<tr>
<td>SC.K.E.5.Su.6</td>
<td>Recognize familiar objects that are far away or nearby.</td>
<td></td>
</tr>
<tr>
<td>SC.K.E.5.Pa.6</td>
<td>Recognize items as nearby.</td>
<td></td>
</tr>
</tbody>
</table>
Is It Living? Thinking Probe
Big and Small Seeds Thinking Probe
CPALMS:
Animals Making a Living
Zoo-rrific!
Sort it Out – SeaWorld Classroom Activity
Comparing Plants, Animals and Seeds
Animals Movin’ On Up
GROWING UP WILD:
Lessons: Spider Webs, Looking at Leaves, Grow As We Go, Terrific Turkeys, Lunch For A Bear, Tracks!
Teacher Hints for “Animals”:
• This unit focuses on the animal portion of the Plants & Animals Unit of Study. This unit is working towards students being able to describe how plants compare to other plants, animals compare to other animals, and how plants compare to animals.
• Animals must eat food to get energy to do the things that keep them alive.
• Animals can move around. Students infer an animal’s movement by its appearance. Be careful to avoid misconceptions (an ostrich has wings and feathers but does not fly).
• Animals have parts that are important to their survival.

Teacher Hints for “Plants”:
• This unit focuses on the plant portion of the Plants & Animals Unit of Study. This unit is working towards students being able to describe how plants compare to other plants, animals compare to other animals, and how plants compare to animals.
• Plants make their own food; they do not eat food (there are exceptions though).
• A plant does not move from one place to another by itself.
• Plants have parts that are important to their survival.

Teacher Hints for “Animals and Plants”:
• Students should be able to compare the physical characteristics of plants and animals, the basic needs of plants and animals, and the ways they grow and change.
• This is the portion of the Plants & Animals Unit of Study that describes how plants compare to animals.

<table>
<thead>
<tr>
<th>Related Access Points</th>
<th>Description</th>
<th>Date(s) Instruction</th>
</tr>
</thead>
<tbody>
<tr>
<td>SC.K.L.14.2: Recognize that some book and other media portray animals and plants with characteristics and behaviors they do not have in real life.</td>
<td></td>
<td>Pacing: April 29 - May 10</td>
</tr>
</tbody>
</table>
Resources

LITERACY:
- Pigs by Robin Nelson
- Wolves by Michael Dahl

INSTRUCTIONAL MATERIALS:
- Could a Wolf Really Blow a Pig’s House Down?

CPALMS:
- Real or Make Believe?
- Could a Wolf Really Blow a House Down?
- Clown Fish
- Use Book Orders for Real and Make Believe

GROWING UP WILD:
Lessons: Spider Webs, Looking at Leaves, Terrific Turkeys, Lunch For A Bear, Tracks!

Teacher Hints for “Real vs. Imaginary”:
- Students can generally tell you why a picture of a plant or animal is real or imaginary and provide some simple explanation of why. They will find it more challenging if they are asked to describe ways a single picture is both real and imaginary.

Related Access Points

<table>
<thead>
<tr>
<th>Description</th>
<th>Date(s) Instruction</th>
</tr>
</thead>
<tbody>
<tr>
<td>SC.K.L.14.In.2</td>
<td>Identify a behavior of an animal or plant in a book or other media that is not real.</td>
</tr>
<tr>
<td>SC.K.L.14.Su.2</td>
<td>Distinguish a real animal and an animal that is not a living thing, such as a toy animal.</td>
</tr>
</tbody>
</table>

Big Idea: The Practice of Science

SC.1.N.1.1: Raise questions about the natural world, investigate them in teams through free exploration and generate appropriate explanations based on those explorations.
Remarks/Examples: Participate in collaborative conversation with diverse partners about grade 1 topics and texts with peers and adults in groups.

Pacing: May 13 – May 31
• Inquiry skills (process skills) are the habits of a scientist. They may include, but are not limited to, the following: observing, comparing, predicting, estimating, measuring, sorting, classifying, communicating, researching, hypothesizing, inferring, concluding, modeling, sequencing, recording, interpreting, analyzing, organizing, and controlling variables. These skills are ways in which scientists think about science or do the work of science.

• An example for each of the inquiry skills is provided in the learning targets, but by all means, BE CREATIVE! For example, when engaging in an investigation, you may choose to investigate whether or not magnets work under water or if all rocks have the same properties. Another example might be to engage in the inquiry skill of inferring to name the identity of an animal after observing a demonstration of its movements and sounds.

• To a first grader, it may seem like the world we live in is man-made – cars, buildings, roads, and computers. But the natural world is all around us and is not man-made – the earth under the buildings and roads, the air we breathe, the water we drink, and the sun that emits light and heat.

• Steps in an investigation MAY include: testable question, research, hypothesis, experiment (materials and procedures), data, results, conclusions, real-world application, communication, and more questions.

• Not every investigation has to use all of the steps of the “scientific method”. A valid, complete investigation may just include the asking of a question, making and recording observations, and drawing conclusions.

• Results can be a little different each time the investigation is conducted. Students should become very comfortable with the need to repeat an investigation a few times to see if similar results will occur.

• How can new learning from explorations connect to the real world? Upon investigating the effect of light on the germination of seeds, students conclude that light does not have an effect. Based on this conclusion, the students know that their seeds will germinate away from the light of their classroom window.

<table>
<thead>
<tr>
<th>Related Access Points</th>
<th>Description</th>
<th>Date(s) Instruction</th>
</tr>
</thead>
<tbody>
<tr>
<td>SC.1.N.1.In.1</td>
<td>Request information about the environment.</td>
<td></td>
</tr>
<tr>
<td>SC.1N.1.Su.1</td>
<td>Ask questions about common objects in the environment.</td>
<td></td>
</tr>
<tr>
<td>SC.1N.1.Pa.1</td>
<td>Recognize common objects in the environment.</td>
<td></td>
</tr>
</tbody>
</table>